6 research outputs found

    Functional electrical stimulation therapy controlled by a P300-based brain–computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study

    Get PDF
    IntroductionUp to 80% of post-stroke patients present upper-limb motor impairment (ULMI), causing functional limitations in daily activities and loss of independence. UMLI is seldom fully recovered after stroke when using conventional therapeutic approaches. Functional Electrical Stimulation Therapy (FEST) controlled by Brain–Computer Interface (BCI) is an alternative that may induce neuroplastic changes, even in chronic post-stroke patients. The purpose of this work was to evaluate the effects of a P300-based BCI-controlled FEST intervention, for ULMI recovery of chronic post-stroke patients.MethodsA non-randomized pilot study was conducted, including 14 patients divided into 2 groups: BCI-FEST, and Conventional Therapy. Assessments of Upper limb functionality with Action Research Arm Test (ARAT), performance impairment with Fugl–Meyer assessment (FMA), Functional Independence Measure (FIM) and spasticity through Modified Ashworth Scale (MAS) were performed at baseline and after carrying out 20 therapy sessions, and the obtained scores compared using Chi square and Mann–Whitney U statistical tests ( = 0.05).ResultsAfter training, we found statistically significant differences between groups for FMA (p = 0.012), ARAT (p < 0.001), and FIM (p = 0.025) scales.DiscussionIt has been shown that FEST controlled by a P300-based BCI, may be more effective than conventional therapy to improve ULMI after stroke, regardless of chronicity.ConclusionThe results of the proposed BCI-FEST intervention are promising, even for the most chronic post-stroke patients often relegated from novel interventions, whose expected recovery with conventional therapy is very low. It is necessary to carry out a randomized controlled trial in the future with a larger sample of patients

    Nonuniform Bessel-Based Radiation Distributions on A Spherically Curved Boundary for Modeling the Acoustic Field of Focused Ultrasound Transducers

    No full text
    Therapeutic focused ultrasound is a technique that can be used with different intensities depending on the application. For instance, low intensities are required in nonthermal therapies, such as drug delivering, gene therapy, etc.; high intensity ultrasound is used for either thermal therapy or instantaneous tissue destruction, for example, in oncologic therapy with hyperthermia and tumor ablation. When an adequate therapy planning is desired, the acoustic field models of curve radiators should be improved in terms of simplicity and congruence at the prefocal zone. Traditional ideal models using uniform vibration distributions usually do not produce adequate results for clamped unbacked curved radiators. In this paper, it is proposed the use of a Bessel-based nonuniform radiation distribution at the surface of a curved radiator to model the field produced by real focused transducers. This proposal is based on the observed complex vibration of curved transducers modified by Lamb waves, which have a non-negligible effect in the acoustic field. The use of Bessel-based functions to approximate the measured vibration instead of using plain measurements simplifies the rationale and expands the applicability of this modeling approach, for example, when the determination of the effects of ultrasound in tissues is required.This research was funded by CONACyT, grant number 257966; CSIC, grant number COOPB20166; ERAnet-EMHE CSIC, grant number 200022; Spanish P.N RETOS, grant number DPI2017-90147-R; and CYTED-Ditecrod Network Ref. 218RT0545.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer reviewe

    Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review

    No full text
    The technology for transcranial magnetic stimulation (TMS) has significantly changed over the years, with important improvements in the signal generators, the coils, the positioning systems, and the software for modeling, optimization, and therapy planning. In this systematic literature review (SLR), the evolution of each component of TMS technology is presented and analyzed to assess the limitations to overcome. This SLR was carried out following the PRISMA 2020 statement. Published articles of TMS were searched for in four databases (Web of Science, PubMed, Scopus, IEEE). Conference papers and other reviews were excluded. Records were filtered using terms about TMS technology with a semi-automatic software; articles that did not present new technology developments were excluded manually. After this screening, 101 records were included, with 19 articles proposing new stimulator designs (18.8%), 46 presenting or adapting coils (45.5%), 18 proposing systems for coil placement (17.8%), and 43 implementing algorithms for coil optimization (42.6%). The articles were blindly classified by the authors to reduce the risk of bias. However, our results could have been influenced by our research interests, which would affect conclusions for applications in psychiatric and neurological diseases. Our analysis indicates that more emphasis should be placed on optimizing the current technology with a special focus on the experimental validation of models. With this review, we expect to establish the base for future TMS technological developments

    Proposal of a Non-Invasive Measurement of Physical Properties of Tissues in Patients with Diabetic Foot: Measurement Experiences in Diagnosed Patients

    No full text
    16 páginas, 12 figurasDiabetic foot is one of the most serious complications in patients with diabetes mellitus. It is distinguished by the development of ulcerations on the sole of the foot. Before the appearance of these, patients with diabetes suffer changes in the tissues of the foot and nearby tissues. This work proposes systems that measure and identify the changes in the physical characteristics of the foot tissues in two study groups, diabetic patients and healthy subjects, with the purpose of proposing tools to physicians to follow up each patient and identify with certainty the evolution in symptoms. The results of the temperature systems show that there is an average temperature difference of ~2 °C between diabetic patients and healthy subjects. Using an electrical impedance system, a frequency window was found between 5 kHz and 22 kHz, where the impedance is significantly different (p > 0.001) between diabetic and healthy patients. The system oriented to macules on the skin is able to identify the type of macules developed by the diabetic patient. In temperature measurement with images from a smartphone, plantar temperature monitoring was achieved in at-risk areas in uncontrolled environments. The results presented in this work were obtained in a time period from 2014 to 2022. Considering the standardization of this equipment when making a diagnosis regarding the study of tissues in the diabetic foot, it will be possible to detect it early. Through differences between the measurements, we have an indicator of the patient’s evolution, and we must highlight that these systems are easy to install, easy to interpret and low cost. Currently, there are no systems with these characteristics, which is why the early detection of diabetic foot is being widely studied.The research was funded by CYTED-Network DITECROD-218RT0545 (2018–2022)

    Low-Intensity Pulsed Ultrasound Effect on MIO-M1 Cell Viability: Setup Validation and Standing Waves Analysis

    No full text
    Low-intensity pulsed ultrasound (LIPUS) has been proposed for novel therapies still under study, where similar parameters and protocols have been used for producing opposite effects that range from increasing cell viability to provoking cell death. Those divergent outcomes make the generalization of expected effects difficult for cell models not yet studied. This paper presents the effect of LIPUS on the viability of the MIO-M1 cell line for two well-established setups and different protocols; the acoustic intensities, duty factors, and treatment duration were varied. Measurements and models for acoustic and thermal analysis are included for proposing a solution to improve the reproducibility of this kind of experiments. Results indicate that MIO-M1 viability is less affected for the cells treated through a dish that is partially immersed in water; in these conditions, the cells neither show detrimental nor proliferative effects at intensities lower than 0.4 W/cm2 at 20% duty factor. However, cell viability was reduced when LIPUS was followed by cell subculturing. Treating the cells through a gel, with the culture dish placed on the transducer, increases cell mortality by the production of standing waves and mixed vibration-acoustical effects. Using the water-based setup with a 1° dish inclination reduces the effects of standing waves
    corecore